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Aeroelastic Effects on the B-2 Maneuver Response

B. A. Winther,* D. A. Hagemeyer,t R. T. BritU and W. P. Rodden§
Northrop Grumman Corporation, Pico Rivera, California 90660

Differential sensor rotations relative to the mean inertia axes usually are neglected in simulations of the
quasisteady frequency response. For control-configured flying-wing aircraft, however, this aeroelastic effect
may be significant as demonstrated by analyses of the U.S. Air Force-Northrop B-2 aircraft. A correction for
the axes rotation has been provided by Rodden and Love who formulated the unaugmented vehicle equations
in terms of motion variables measured in a structurally restrained system. This article, while retaining the
original mean axes formulation, extends the Rodden-Love concept to the sensor output equations, which are
required for modeling of aeroservoelastic effects. By applying the modified equations, longitudinal maneuver
analyses are performed and correlated with flight test data.

Nomenclature
A, B = matrices in equations of motion
C, D = matrices in output equations
C_, Cm = aerodynamic coefficients
c = reference chord length
d = structural deflection derivative
F = generalized external force vector
G, M = matrices in intermediate formulation
g = acceleration of gravity
h = structural displacement
/ = pitch moment of inertia
i = SI/pSc3

I = e.g. distance from reference station
m = vehicle mass
n. = vertical load factor
q = generalized coordinate
S = reference area
s = sensor distance from reference station
t = time
u = state variable vector
V = velocity
X, Y, Z = Earth-fixed coordinates
*, y, z = mean axes coordinates
a = angle of attack
y = flight-path angle
A = prefix indicating offset from initial

value
8 = control deflection
e = flexibility increment
9 = pitch angle
A - 2//c
fji — 2ml pSc
v = 2V2/gc
p = air density
a = 2s/c
T = c/2V
\lf = structural deflection component

Subscripts
s
x
0

= structural axes value
- d( )ldx
= initial value
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Superscripts
= d( )/dr

' = mean flight-path axes value

Introduction

F OR motion simulator applications, the flexible vehicle
equations customarily are written in terms of aerody-

namic coefficients that are determined with the aeroelastic
structure restrained in some statically determinate manner
near the e.g. Inertial relief effects for the free-flying aircraft
then are taken into account through separate aeroelastic in-
ertial coefficients determined also for the restrained system
undergoing translational and rotational accelerations. This
formulation offers the advantage that basic aerodynamic char-
acteristics, e.g., Cza, C,7ja, etc., depend only on Mach number
and altitude, but are independent of the weight; while the
inertial coefficients, e.g., C,«, €,„$, etc., depend on the weight
and its distribution, as well as Mach number and altitude.
Although these equations have been implemented rather suc-
cessfully on simulators for many years, it can be shown that
the formulation is inexact in the sense that it does not conserve
angular momentum and, as a consequence, yields solutions
that for some configurations may vary significantly with the
choice of restraint. To correct the deficiency, Rodden and
Love1 established the relationship between the structural axes
(at the restraint) and the mean body axes required for con-
servation of angular momentum. In the case of symmetric
motion, it is the angle between the two longitudinal axes that
needs to be considered.

Early results of the B-2 flight test program verified the basic
aeroelastic stability and flying quality performance. A de-
tailed correlation with analytical simulations indicated, how-
ever, that some aerodynamic terms required adjustments, which
in some cases were difficult to justify. This anomaly, together
with an apparent inconsistency between quasisteady and dy-
namic analyses, led to a review of the simulator equations
that were known to contain several approximations. One ap-
proximation that had been made for the sake of simplicity,
neglected the relative motion between the mean body axes
and the structural reference frame as previously discussed.
During the review, it was concluded that, for control-config-
ured flying-wing aircraft like the B-2, the axis rotation is an
important component of the aeroelastic response, and a de-
cision was made to revise the simulator equations of motion
as well as the associated sensor output equations.
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In the analysis of control-configured vehicles, the output
equations describe the motion measured by sensors that are
used in feedback control of the system. To provide a proper
model of the feedback system, the sensor equations must
represent the motion on the structure rather than on the mean
body axis. This article extends the concepts of Ref. 1 to the
quasisteady response equations, paying particular attention
to the structural dynamics and accounting for the relative
motion of the mean axes. Since the general equations are
quite complex, we will limit the discussion to small pertur-
bations about an initial reference condition of steady, sym-
metric flight. Consequently, the equations are linear in the
motion variables. As in Ref. 1, the fore/aft degree of freedom
(DOF) is eliminated from consideration by the assumption of
constant (unperturbed) forward velocity.

Unaugmented Aircraft Equations
The equations of motion may be formulated in any one of

the following three types of coordinate systems: 1) structural
axes (jcs, yv, zv); 2) mean flight-path axes (V, y' , z'); and 3)
mean body axes (x, y, z).

As established in Ref. 1 and discussed in the Introduction,
the use of structurally attached axes for the equations of mo-
tion [Eq. (22) in Ref. 1] requires an additional relationship
[Eq. (35) in Ref. 1] describing the orientation of the mean
body axes in terms of structural axes motion variables. This
formulation contains aerodynamic coefficients for the re-
strained structure as well as aeroelastic coefficients that ac-
count for inertial relief effects of the free-flying aircraft. Mean
flight-path axes, commonly used in structural dynamics, result
in a more direct description of aeroelastic deformations. How-
ever, since this article is limited to the quasisteady region of
the aircraft response, we will use the mean flight-path axes
only to introduce the mean body axes system that is the con-
ventional one in flight mechanics. This latter system also is
used in an alternate formulation derived for unaugmented
aircraft by Dusto and his associates.2-3

The mean flight-path axes are aligned with the unperturbed
flight path of the aircraft and move with its average (initial)
velocity relative to the Earth-fixed system (X, Y, Z). Trans-
formations between the two coordinate systems (see Fig. 1)
are determined by

X = (x1 + VAr)cos
Y = y'
Z = —(x'

+ z' sin y()

z' cos
(1)

The time increment Af is measured from the initial reference
condition when the aircraft flight-path angle is

y,, = «« - «« (2)
With plunge and pitch DOFs represented by generalized

coordinates q{ and q2, a displacement of the rigid (i.e., un-
loaded) airframe in the z' direction may be described by

h = q, - x'q2

leading to the following equations of motion:

[ m -ml
-ml I \

(3)

(4)

The vector F is derived from a combination of aerodynamic
and gravitational forces.

As already noted, we will formulate the equations of motion
in a body axes system. The x axis in this type of system may
be oriented along any convenient reference line, such as the
chordline of the wing root, the principal inertia axis, or an
initial wind axis (also named stability axis). Even though the

z
Fig. 1 Illustration of two different mean axes concepts.

orientation may differ from one problem to another (as with
the stability axis), the common characteristic of all body axes
is that they are fixed relative to the aircraft e.g. In the present
discussion we will employ "mean" body axes that are lined
up with the instantaneous, average position of the flexing
structure, such that the static mass moments about the axes
are constant (zero, for / = 0) throughout the maneuver. When
angular accelerations can be considered independent of the
spacial coordinates, as we assume here, the mean axes become
parallel (identical, for / = 0) to the principal axes.

The generalized coordinates of Eq. (3) may be expressed
in terms of conventional body axes variables. One relationship
is derived from the linearized boundary condition on the mov-
ing wing surface:

a(x) - a(] =

dh _ Vdh\
dt ~ dx' )

V (5)

At the reference station of the mean body axis (i.e., A: =
0) we obtain

= q}/V

Other relationships may be derived by observing

ft
= g(cos 0 - ns)
= 0- 8(}

(6)

(7)

Applying the small perturbation linearization and the def-
initions of stability derivatives from Ref. 4, the equations of
motion for level flight (i.e., y() = 0) are reduced to the fol-
lowing state vector formulation:

u = Au (8)

where

_ (2/* -
+ C,,ld) ir
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We note that Eq. (8) represents small perturbations about
a steady, level, and symmetric flight condition. It describes
the maneuver response of the aircraft gravitational center and
is formulated in terms of motion variables at the mean axis
reference station.

Another important observation is that in the quasisteady
frequency range, the equation is valid for elastic airframes as
long as the stability derivatives are measured relative to the
principal (i.e., mean) axes of the flexing structure. Even though
the elastic deformation does not appear explicitly in the basic
equations of motion, it needs to be accounted for in simu-
lations involving the sensor response. The sensor equations
are derived in the following section with the continued as-
sumption of quasisteady structural equilibrium during the ma-
neuver.

Sensor Output Equations
For discussion of the output equations, we introduce a co-

ordinate system (x,, ys, zv) attached to the structure at the
sensor location (x, y, z) = (s, 0, /zy). In this reference frame,
the e.g. moves and the principal axes rotate as the aircraft
flexes (see Fig. 2). The z coordinate hs denotes the vertical
displacement of the sensor relative to the mean x axis. If the
unaugmented aircraft equations are transformed to structural
axes, as described in Ref. 1, the equations of motion will
include terms that represent aerodynamic forces generated
by the flexibility increment:

ex = — a(s) (9)

where the angle of attack a(s) is measured at x = s in the
mean axes system, and a, is measured in the structural axes
system. In the following, the sensor motions will be expressed
in mean axes variables so that the basic aircraft equations are
retained as shown in Eq. (8). Using Eq. (5) to derive the
angle of attack produced by structural flexing we obtain

hJV (10)

The quantity hxx denotes the angular deflection of the sensor
relative to the mean axis. Thus, the sensor motions are de-
scribed by

av = a (s) + ES
Os = 8 - hsx

(11)

Aerodynamic forces generated by the time derivative of hs
in Eq. (10) vanish at the quasisteady limit so that the flexibility
increment becomes simply es = —hsx. This increment, which
is obtained from structural analysis, may be expressed in terms
of partial derivatives dy. One deflection component t/r, is con-
sidered caused by aerodynamic loads only, whereas the re-
maining part if/2 is derived from a combination of aerodynamic

and inertial forces. The two components of ss are written in
the following expanded form:

(LZ)

where d() represents the incremental sensor rotation due to
aerodynamic loads at zero mean axis incidence. The remain-
ing derivatives, being equivalent to the a coefficients of Ref.
1 (Eq. 37), are defined as follows:

**1 i adas

, Bhad7 = -, . x = au

(13)

Applying these derivatives in Eq. (11) we obtain

[a(s) - d() - d2rd(s) - d3r0 - d48 - d5nz(s) - d6r20]

6=0+ sv

(14)

It is observed that, in accordance with the criteria for quasi-
steady motion, the time derivative of ss is neglected in the
formulation of ay, but is retained as a first-order term in the
pitch-rate equation. We also note that:

a(s) = a - sO/V
nz(s) = nz + sQlg (15)

The initial condition for the structural angle of attack is
obtained from Eq. (14):

a'° = (1 + d,)

The combination of Eqs. (8) and (14-16) yields:

Aav - [Cn, C12]ii

(16)

(17)

where

Fig. 2 Illustration of relative motion between structural and mean
axes.

D, -

+ G2[An + G22A2l

+ G21A12 + G22A22

(i +
1

" (1 + d,)

-r(d, + d5f + g-)
(1 + d,)
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G2l =
r(d5i/ - d2)

(1 + d,)

G,, -
d6 - d2cr)

For derivation of the sensor pitch rate we differentiate Eq.
(9). Combination with Eqs. (14-16) yields

(18)

where

s, = [G31, G32](>lii + BM) +

G3l = CM - 1

G,, = C,, + ra

Eliminating the unsteady 8 term and substituting Eq. (18)
into Eq. (11) we obtain

0¥ - [C21, C22]ii

where

C21 = G31A{1 +

C22 = 1 + G31y412

D2 = G31£, +

By defining an output vector

(19)

(20)

the sensor equations may be expressed in the following con-
densed form:

iiv - Cu + DA6 (21)

The elements of matrices C and D are defined in connection
with Eqs. (17) and (19).

Evaluation of Method
The vehicle response equations [Eqs. (8) and (21)], were

programmed using the Matrixx software package.5 One con-
cern was the apparent singularity (for d, = -1) in Eqs. (16)
and (17). This difficulty, which was found to occur for the B-
2 aircraft at high dynamic pressure, is caused by numerical
truncation in the vicinity of a 0/0 type limit. In the simulation
the problem was solved by a procedure that bypasses the
narrow range of dynamic pressure for which numerator and
denominator terms in the output equation [Eq. (21)] are close
to zero. It is important to note that this equation must be
based on a consistent set of aerodynamic and aeroelastic coef-
ficients. Since the d coefficients of Eq. (12) are determined
analytically, the output equations require similarly computed
aerodynamic data. This requirement, which does not apply
to the aerodynamics of the basic equation [Eq. (8)], becomes

more important as the dynamic pressure increases and the
angle between the axes widens.

Evaluations of the new methodology were based on a simple
beam idealization of the B-2 as represented by 179 DOFs for
the structure and 384 control points for the aerodynamic vor-
tex-lattice model. An outline of the B-2 planform is shown
in Fig. 3. To achieve a true comparison between the original
equations and the present formulation, a theoretical database
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was developed by applying the MSC/Nastran aeroelastic anal-
ysis code.6 Transfer functions derived from the two formu-
lations are shown in Figs. 4 and 5 for sensor responses due
to pitch control input. The differences are significant. It should
be noted, however, that the original algorithm in this eval-
uation neglected all inertial relief terms as well as the relative
motion of the sensor axis. Inertial relief due to translational
acceleration, for instance, accounts for the gravitational (1 g)
load deformations of the structure. In the chosen example the
elimination of these terms produces a statically unstable re-
sponse. The effect of sensor axis rotation was isolated to
demonstrate that it is an important component of the B-2
maneuver response. This evaluation, which also is presented
in Figs. 4 and 5, was performed by adding all the inertial relief
terms to the original equations and comparing the results with
data derived from the current formulation.

Correlation with Flight Test Data
During the flight test program, the vehicle response due to

pilot commands was telemetered to a ground station and re-
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Fig. 6 Time history of pilot command and resulting pitch rate.
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Fig. 7 B-2 angle-of-attack transfer function.
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Fig. 9 Aerodynamic pitch moment derivative.

corded on the computerized test data system. A representa-
tive time history of the pilot input and the resulting pitch rate
are illustrated in Fig. 6. The open-loop transfer functions for
various motion variables were generated by computing the
ratios between the cross-power spectra and the autopower
spectrum for the control excitation. Typical results are shown
in Figs. 7 and 8 for the angle of attack and the pitch rate
measurements supplied by the attitude/motion sensor set
(AMSS), which is located near the pilot station. At the chosen
flight condition, the inboard and the midspan elevens are used
for pitch control.

Before addressing the correlation between test and analysis,
a summary discussion of the aerodynamic database is re-
quired. Quasisteady flight tests (i.e., wind-up turns) have shown
that the aircraft is statically more stable and has lower pitch
damping than indicated by wind-tunnel tests and preliminary
analyses. Thus, in the equations of motion the moment de-
rivatives Cma and (C,nd + Cmil) need to be adjusted to produce
short period characteristics (frequency and damping) that match
the test data. Confirming results of the quasisteady flight test,
a graph of Cma derived from estimates of the short period
frequency is presented in Fig. 9. The corresponding analytical
data, although offset from the test results, indicate that aero-
elastic effects (as measured by the slope of the graph) are
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Table 1 Sources of
aerodynamic data

Derivative

Q,I, c,«, c,HR

'c"*cim,

Source
Wind tunnel
Flight test
Analysis

predicted correctly. The wind-tunnel measurement is plotted
on the axis for zero dynamic pressure since aeroelastic de-
flections of the model are negligible. It is close to the analytical
value for the undeformed vehicle.

Analytical results presented in Figs. 7 and 8 were obtained
by using aerodynamic data from a combination of wind-tunnel
measurement, flight test, and analysis. The source of each
derivative is identified in Table 1. By a method similar to the
one used for Cma, the term (Cmd + C,m/) was computed from
an estimate of the damping in the short period mode. Coef-
ficients derived from wind-tunnel measurements were com-
bined with analytical factors (elastic/rigid ratios) that account
for aeroelastic effects. These factors and other aeroelastic
terms were generated in the MSC/Nastran code by using a
more detailed airframe model than the one described in the
preceding section. While retaining the aerodynamic lattice
from the preliminary analyses, the structural representation
was expanded to 19,300 unconstrained DOFs, 492 of which
were employed in the solution process.

Concluding Remarks
Equations that account for sensor motions relative to the

mean inertia axes were derived and applied to the USAF/
Northrop B-2 aircraft. Parameters of the equations were gen-
erated by employing the MSC-Nastran aeroelastic analysis
code.

An evaluation of the methodology led to the conclusion
that the output equations must be derived from a consistent
(i.e., analytical) database, but that various parameters in the
equations of motion may be adjusted to match wind-tunnel
measurements or data derived from flight tests. Thus, terms
related to a were included in the equations of motion, but
were omitted from the output equations since the aeroelastic
analysis code did not have the capability to compute load

distributions due to this motion variable. The effect of these
derivatives, which may not always be small, was left for future
investigation.

Maneuver response analyses that account for the relative
sensor motion were compared to early simulation results and
then to flight test data. It was demonstrated that the sensor
axis rotation is an important component of the aeroelastic
vehicle response. Correlation with frequency sweep data con-
firmed other flight test observations that showed the aircraft
to be more stable and less damped in pitch than predicted.
After adjustment of the static stability and pitch damping
terms, the analytical model produced good agreement with
test results.
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